Conclusions from the BioMoSA project

G. Pröhl
GSF-Institute of Radiation Protection

Joint Final Seminar on the EU-BIOCLIM and BioMoSA project

Luxembourg, 27-28 November 2003

Content

- Approach
- Results
 - Deterministic
 - Stochastic
- Conclusions of the study
- Recommendations for performance assessments
- Open questions

Outline of BioMoSA

- Model development
 - 5 European sites
 - Generic assessment tool
- Model comparison
 - Normalized exposures
 - Important processes and parameters
- How site-specific should a biosphere model be?

Normalized exposures

- Transfer of radionuclides from geosphere to man
- Intermediate step in all cases is radioactivity in water
 - Well water
 - Surface water (rivers and lakes)
- Use of water is a key issue in all models
 - Drinking
 - Watering cattle
 - Irrigation

Normalization

- Activity in surface water / Release to surface water
 - [Bq/m³ per Bq/a, Bq/m³ per Bq]
- Exposure / Activity in well/surface water
 - [Sv/a per Bq/m³]
- Enables differentiation
 - Impact of geosphere/biosphere interface
 - Impact of the biosphere system

Pathways

Pathway	Model				
	Germany	Belgium	Spain	Sweden	Hungary
Ingestion					
Drinking water	x	X	X	X	x
Cereals	x	x	X	x	x
Potatoes & roots	X	X	X	X	X
Leafy vegetables	X	X	X	X	X
Fruit vegetables	X	X	X		X
Milk	X	X	X	X	X
Beef	X	X	X	X	X
Pork	X	X	x		X
Lamb	X	X	X		X
Freshwater Fish	X	X	X	X	X
Soil	-	-	X	X	-
Chicken	-	-	X		X
Eggs	-	-	X	-	X
Citrics			X		
Fruit			X		
Leguminosae			X		
Inhalation					
Resuspended soil	X	X	X	X	х
External exposure					
Contaminated land	X	X	x	X	x

Normalized exposure (mSv/a per Bq/m³)

Ratio normalized exposure: adults/infants

Findings

- In general, little differences between the sites
- Considerable differences for Se-79, CI-36, Cs-135
 - Parameter selection to be reviewed
- Variation between adults and infants
 - Factor of 3-5 for CI-36, Se-79 and Tc-99
 - Less than a factor of 3 for other radionuclides

Importance of pathways

Adults: Drinking water (%) (adults)

Nuclide	В	Е	G	Н	S
CI-36	17,6	32,5	40,6	39,2	43,1
Se-79	<u>0,4</u>	<u>0,3</u>	71,4	80,0	56,7
Tc-99	86,7	30,0	80,4	81,4	34,5
I-129	75,9	33,9	59,2	83,3	44,7
Cs-135	38,1	<u>1,5</u>	46,7	<u>1,5</u>	25,0
Ra-226	44,0	14,7	66,7	26,3	53,1
Pa-231	84,8	9,3	87,7	18,1	50,6
U-238	90,9	33,8	91,7	72,2	56,3
Np-237	89,8	32,1	89,5	90,8	55,0
Pu-239	90,9	27,5	94,7	86,7	55,6

Adults: Cereals (%)

Nuclide	В	E	G	Н	S
CI-36	0,0	18,8	6,9	13,8	0,0
Se-79	0,0	6,1	7,9	0,4	0,0
Tc-99	0,0	16,7	6,4	1,3	0,0
I-129	0,0	18,9	6,6	0,1	0,0
Cs-135	0,0	2,8	9,7	3,9	0,0
Ra-226	0,0	20,7	13,0	13,9	0,0
Pa-231	0,0	7,1	4,2	31,4	0,0
U-238	0,0	18,8	3,0	0,2	0,0
Np-237	0,0	17,9	3,9	0,1	0,0
Pu-239	0,0	15,3	1,9	0,1	0,0

Adults: potatoes & roots (%)

Nuclide	В	E	G	Н	S
CI-36	34,8	4,5	2,8	7,6	27,7
Se-79	53,3	4,9	1,0	0,5	20,7
Tc-99	1,4	3,7	2,0	0,6	37,3
I-129	7,9	4,3	2,4	0,4	12,0
Cs-135	34,3	5,8	7,7	21,1	35,4
Ra-226	23,6	5,8	3,7	7,0	9,1
Pa-231	4,2	2,4	1,5	33,8	8,0
U-238	1,9	4,1	0,8	1,2	6,0
Np-237	1,4	4,1	1,0	0,6	5,8
Pu-239	2,7	3,3	0,5	1,0	1,0

Important pathways

- Drinking water dominating
 - Exception Se-79, Cl-36, Cs-135
 Parameter selection!!!

- Cereals
 - More important in warm climates

No clear trend for other pathways

Well scenario, stochastic calculations: Ratio 95/5-percentile

Findings

- Uncertainty is relatively low
 - Ratio 95/5percentile in general around a factor of 10
- CI-36, Se-79, Cs-135
 - Combination of very pessimistic assumptions

Parameter selection

- Interpretation of data is a major source of uncertainty
- Cl-36, I-129 and Se-79
 - Data vary over orders of magnitudes
 - Correlations
- Careful consideration
 - Speciation
 - Interaction with soil constituents

Parameters

- Pronounced differences in
 - Interception
 - Translocation
 - Migration in soil
 - TF soil-plant
 - CF water-fish
 - K_d water-sediment

Parameters: Serious differences with massive impact on exposures

- Chlorine, selenium (B, E)
 - Root uptake: > Factor of 10 higher than other models
 - Migration: > Factor of 10 lower than other models
 - conflicting with speciation
 - Transfer to milk and beef close to the physiological limits
- Cesium (E, H)
 - Migration: > Factor of 10 lower than other models
- Reconsideration required

K_d-values and migration in soil

- The kd-concept is used in 4 of the sitespecific models.
- Determination of K_d-values is essential for its application
- Results from batch experiments are difficult to apply
- Further migration processes
 - Erosion
 - Bioturbation
 - Migration of radionuclides attached to soil particles

Recommendations for performance assessments

- Reference Biosphere Methodology is a good starting point
 - Provides useful guidance
 - Ensures completeness of the model
- FEP-List is very useful
- Nevertheless, modeling is subject to individual interpretation

Modeling

- Model complexity should be consistent with available data
- Complex models are more difficult to communicate
 - Inherent lack of knowledge on future
 - Long time frames
- Simpler models facilitate uncertainty analysis

Results

- Variations for well and river scenarios are relatively low
- Drinking water is an important or even dominating pathway
- Due to physiological reasons, the variation of drinking water is relatively low
- Drinking water represents a kind of a "baseline" with relatively little variations among the sites
- Ingestion of foods are "on top"

Results II

- Larger uncertainties for releases to
 - Lakes
 - Marine
 - Deep soil
- Transfer is more complex
- More site-specific
- More difficult to generalize

Soil as geosphere-biosphere interface

- Contamination of soil surface due to rising contaminated groundwater associated with pronounced uncertainties
- Poor data base
- Site-specific
- Experiments needed

Impact of climate

- BioMoSA sites covers wide range of climatic conditions
- Climate-sensitive parameters
 - Intake of drinking water
 - Irrigation rates
 - Dust load in air
- Impact on exposure relatively low

Factors limiting uncertainty and variability

- Intake of drinking water is the most important pathway
 - Little contribution to uncertainty due to low variation (< factor 2)
- Food intake
 - Limited by physiological requirements (energy, proteins)
 - 15-20 plant and 5 animal species are relevant for food supply
 - Limit for potential contribution of food to exposure ???

Limiting factors

- Irrigation
 - Assessment context defines sustainable agriculture
 - Possible salinisation in arid climates:
 Limitation of application of irrigation water
- Sustainable irrigation regimes are not to implement in any climate

Generic model

- Development of a generic model
 - Contains all FEPs
 - Contains all Geosphere-Biosphere-Interfaces
- Comparison against site-specific models
- Identification of important pathways
- Suggestions for model simplification

9/1/

German site, well scenario 5th and 95th percentile infant total dose

Model simplification

- Remove pathways not included in the majority of the assessments
- All runs (sites and BioGeM),pathways to contribute less than 10% to the total dose for all radionuclides
 - Chicken
 - Eggs
 - Liver
- Parameters
- Modelling approaches
- Nearly any pathway/nuclide combination may be potentially relevant

Model simplification II

- Important pathways in all assessments
 - Drinking water
 - Cereals
 - Potatoes & roots
 - Leafy vegetables
 - Fish
- Generic model
 - Good agreement for well scenario
 - Re-iteration necessary for other GBIs

Open questions

- Find consensus on appropriate parameters
 - Speciation
 - Typical ranges for parameter values
 - Ensure consistency among parameters
 - Avoid conflicting data sets
- Data base for rise of contaminated ground water
 - Experimental data base needs considerable improvement
- Communication of results
 - Comparison with analogues
 - Consideration of historical data

