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Foreword
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Work package 4 will explore and evaluate the potential effects of climate change on the nature of the 
biosphere systems.

Work package 5 will disseminate information on the results obtained from the three year project 
among the international community for further use.
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1. Introduction and objectives

The overall aim of BIOCLIM is to assess the
possible long term impacts due to climate
change on the safety of radioactive waste

repositories in deep formations. This aim is addressed
through the following specific objectives:

• Development of practical and innovative strategies for
representing sequential climatic changes to the
geosphere-biosphere system for existing sites over
central Europe, addressing the timescale of one
million years, which is relevant to the geological
disposal of radioactive waste.

• Exploration and evaluation of the potential effects of
climate change on the nature of the biosphere
systems used to assess the environmental impact.

• Dissemination of information on the new
methodologies and the results obtained from the
project among the international waste management
community for use in performance assessments of
potential or planned radioactive waste repositories.

This deliverable has the following specific motivations
and objectives:

Its main aim is to provide time series of climatic
variables at the high resolution as needed by
performance assessment (PA) of radioactive waste
repositories, on the basis of coarse output from the
CLIMBER-GREMLINS climate model.

The climatological variables studied here are long-term
(monthly) mean temperature and precipitation, as
these are the main variables of interest for
performance assessment (see Ref.1, section 3.2).
CLIMBER-GREMLINS is an earth-system model of
intermediate complexity (EMIC), designed for long
climate simulations (glacial cycles). Thus, this model
has a coarse resolution (about 50 degrees in longitude)
and other limitations which are sketched in this report
(further details are provided in Ref.2). For the purpose

of performance assessment, the climatological
variables are required at scales pertinent for the
knowledge of the conditions at the depository site. In
this work, the final resolution is that of the best
available global gridded present-day climatology, which
is 1/6 degree  in both longitude and latitude (this will
be called “regional scale” here, although it is a
reasonable approximation of local (site) temperature
and precipitation when there is no complex local
topography).

To obtain climate-change information at this high
resolution on the basis of the climate model outputs, a
2-step downscaling method is designed. First, physical
considerations are used to define variables which are
expected to have links which climatological values
(i.e. predictors, such as continentality); secondly a
statistical model is used to find the links between these
variables and the high-resolution climatology of
temperature and precipitation. Thus the method is
termed as “physical/statistical” : it involves physically
based assumptions to compute predictors from model
variables and then relies on statistics to find empirical
links between these predictors and the climatology. 

The simple connection of coarse model results to
regional values can not be done on a purely empirical
way because the model does not provide enough
information – it is both too coarse and simplified. This
is why we first need to find these “physically based”
relations between large scale model outputs and
regional scale predictors. This is a solution to the
specific problem of downscaling from an intermediate
complexity model such as CLIMBER. There are several
other types of downscaling methodologies, such has
the dynamical (model) and rule-based method
presented in other BIOCLIM deliverables. A specificity of
the present method is to attempt to use physical
considerations in the downscaling while a detailed
“dynamical” approach is out of reach because
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p. 6/7CLIMBER only (or mainly) provides the average climate.
By contrast, an input of time-variability at various scales
(preferably up to meteorological events) is necessary
for a more dynamical approach (see e.g. Ref.3 ; Ref.4). 

This report is organised as follows: 

Section 2 relates to the design and validation of the
method, while section 3 reports the application to

BIOCLIM simulations. We first present the employed
data sources, which are the model results and the
observed climatology (subsection 2.1). We then
present the principles of the downscaling method (2.2),
the formulation of the predictors (2.3) and the
calibration of the statistical model, including results for
the last glacial maximum (2.4). In section 3, the results
are first presented as time series for each site (3.1),
then as maps at specific times, or snapshots (3.2).  



2. CLIMBER outputs and
the downscaling issue
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Climatological data is a key element in this work,
because it will be used to statistically estimate
the parameters of the empirical part of our

method. These high resolution observation-based data
will also serve as a guide to find which kind of «physical
information» we may want to add to coarse climate
model outputs in order to provide regional details, as it
will appear later. As the CLIMBER model itself does not
represent day to day variability nor year to year changes,
we seek a monthly climatology. We need at least

precipitation and temperature on land areas, at a high
spatial resolution. This is conveniently provided by the
recent, 10’ resolution (1/6 degree) global gridded
climatology from the Climate Research Unit [Ref.5],
which proved more trustworthy than formerly available
data (during our preliminary tests). The corresponding
temperatures for January and July are plotted on figure
1. The resolution of that dataset will be the target
resolution of our downscaling, i.e. all our data will be
computed or interpolated on that grid. 

2.1. - Basic data 

2.1.1. - Climatology

The climate model, CLIMBER2.3 [Ref.6] is
described in deliverable D7 (Ref.2, section
2.1.2). It has a coarse longitudinal-latitudinal

grid: each atmospheric grid box is 51° in longitude and
10° in latitude. Also important for our application, it is
an “intermediate complexity model”: with comparison

to 3D general circulation models, it includes less
explicit representations of atmospheric features, thus
relying on more parametrisations. In particular, it
doesn’t represent mid-latitude low pressure systems,
but accounts for their effects on the meridional heat
transport. Thus it ignores the variability at the time

2.1.2. - CLIMBER model

Figure 1 : Monthly mean temperature climatology (CRU 10’ data, see text)

January July
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scale of meteorological events (e.g. winds associated
with low pressure systems) and also at the time scale
of a few years, in particular the North Atlantic
Oscillation (NAO). 

Our domain of interest is entirely covered by the
longitudinal sector 2 in CLIMBER’s atmosphere.
Surface-air temperature for this sector are shown on
figure  (upper panels). Here, the model data for the
sector which covers the domain are simply linearly
interpolated in the meridional direction. It might be
desirable to try interpolating CLIMBER outputs in the
zonal direction too, i.e. using data from the sectors
1 and 3. The result of this 2-dimensional (2D)
interpolation between the centres of CLIMBER meshes
is shown in figure , bottom panels. However, sector 1 is
above the Atlantic Ocean, while sector 3 has a high
surface altitude because it include the Himalayas. The
2D interpolation seems to provide a somewhat more
realistic field, in particular because it is likely including

a continental effect, i.e. with warmer air above ocean
than above inner land areas in winter and the opposite
in summer. But it must be remembered that this
interpolation is done between sectors which differ
largely from the one we are interested about – i.e. we
focus on land, not sea, and not at the mean altitude of
the Himalayas. It thus remains unclear whether this 2D
interpolation would provide a better input temperature
for our downscaling work. A solution might be to use
temperatures from the free atmosphere rather than
surface, but if we don’t take model surface
temperature, it would seem logical to represent the
effect of various surface and vegetation types inside
the downscaling method : this might be an attractive
perspective, but it goes beyond the scope of the
present study. More importantly, the fact that the 2D
interpolated field includes a “continentality” effect may
conflict with the representation of that effect in the
downscaling approach, as explained below.

p. 8/9

Figure 2 : CLIMBER model surface air temperature. Top : model sector 2 only (with meridional linear interpolation). Bottom :
2D linear interpolation.

January July
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2.2. - Physical-statistical method principles

A s described above, there are much more details
in the real climatology than in our model data, at
various geographical scales. Some statistical

approaches rely on an essentially empirical method to
connect the coarse model results to high resolution
variables. But these methods usually take model inputs
which contain more information than what we can
obtain from an EMIC such as CLIMBER. When
large-scale meteorological conditions are known, these
can be connected to regional patterns of precipitation
and temperature on a either a statistical basis
(empirical approach, see e.g. Ref.7) or a dynamical
basis (model or desaggregation scheme, see e.g.
Ref.4). But in the context of this climate model, we only
have monthly climatological means. On the other hand,
observed data of good quality on most of Europe are
only available for present-day conditions. In summary
we have little information on time variability at all
scales, from meteorological to climate state changes. 

In this context, trying to connect regional temperature
and precipitation to large scale information using only
statistics would have severe limitations : we don’t have
enough data to calibrate empirical relations in a way
which could be reliably applied to climate change on
long periods. Our aim is than to find “physically based”
relations between regional and large scales which
might supplement the statistical approach. These
relations have to be robust, i.e. be independent of the
climate state (past, present, future). In addition, the
relations will provide insight on the climate change
issue only if these involve input data for which we know
the value at the desired time, such as sea-level or
climate model variables.

Before going into the details of these additional
physical relations, it is now necessary to introduce the
statistical model. The input variables, or predictors, are
the data for which climate changes value are known
(either directly from the climate model or using
additional “physical” hypothesis). The statistical model
is thus a link (regression function) between these

predictors and the desired output, or predictand - here
temperature or precipitation. A quite flexible model is
the Generalized Additive Model (GAM), in which the
predictand is expressed as a sum of smooth (spline)
functions of each predictor, including linear terms if
desired :

where Y is the predictand, X j are the predictors, bo and
bj are constants, ƒj are spline functions and ε is the
model error.
A very simple statistical model will now illustrate the
method and serve as a guide for further development :

where Τ is the high-resolution temperature field, ƒ(zs) is
a smooth function of the land surface height zs , ΤM is
the interpolated climate model surface temperature,
which is decomposed in its geographical domain1

-averaged value ΤM and the deviation from this mean :

The deviation from the mean, ∆ΤM , mainly represents
the meridional temperature gradient from CLIMBER,
because this model is very coarse and we use data
from only one longitudinal sector, as shown in figure
(top panels). 

We are thus constructing a regression function relative
to the link between land surface height and large-scale
temperature gradient from the climate model, and
regional temperature on the other hand. The regression
function (the spline ƒ(zs) and the coefficient bΤ) is
provided by the implementation of the GAM model in
the R software [Ref.8]. 

This regression describes the geographical variability
for a given month. As our final objective is climate
change downscaling, the regression must also be
meaningful in climate change conditions. The first step
in this direction is the inclusion of the large scale

(3)

1 The geographical domain is the “domain of interest” shown e.g. on figure 1.
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gradient from the climate model : we suggest that
changes in the modelled gradient have something
“real”, i.e. that if the model gives a larger/smaller
gradient, it is reasonable that the statistical prediction
also involves that change in the gradient. By doing it
this way, we assume that the link between CLIMBER’s
gradient and the high resolution temperature is
somewhat robust, i.e. that if the gradient is smaller in
the reality than in the climate model, this will also be
true, and possibly in the same ratio (the regression

coefficient) in a changed climate. As we only have one
reference climate state (the present), we have no
information about the link between the domain mean
temperature in the model and in the reality. Therefore,
we can only decide that changes in the mean model
temperature are included in the downscaling output;
that’s why we just add the mean temperature ΤM, which
is thus not included in the estimated regression
function.

It is now interesting to have a look at the ability of our
simple regression to represent the actual variance of
temperature in the domain. Topography and north-south
gradient already explain a substantial part of the
geographical variability, so that our regression function
produces maps which partly looks like the climatology.
The difference between the regression and the actual
temperature, i.e. the statistical model error ε, is plotted
on figure. These maps reveal the “missing information”

in the simple statistical model. The dominant “missing”
feature is continentality : in winter, the map shows that
to match the climatology, eastern parts of the domain
should be colder while western ones should be warmer,
and the contrary is seen for summer. The simple
regression also lacks other effects, of which some are
probably connected with secondary effects of mountain
ranges (e.g. the Rhone valley, the Po plain).

I n this section, we try to define physically-sound
relations between large and regional large scales to
supplement the statistical approach based on

climatology. These relations have to be robust, i.e.

reliably apply to climate change. The obtained regional
variables are meant to be used as inputs of the
statistical downscaling model, or predictors. 

p. 10/11

Figure 3 : Difference between actual surface-air temperature climatology and a very simple regression based solely on
topography and coarse climate model temperature.

January July

2.3. - Physically based predictors
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Continentality is a major feature of geographical
climate variability. Continental, eastern Europe
has a larger Temperature seasonal cycle (cold

winters, hot summers) than coastal regions. Broadly
speaking, the temperature variability over land areas is
mitigated in regions which receive maritime air more
directly and frequently, in connection with cyclonic
activity. This also impacts precipitation, with inner
continental areas becoming dryer than those more
influenced by the seas.

Predictors are computed from climate model outputs.
The employed climate model variables must be
selected so that these bring pertinent information
about climate change, to make the predictor as useful
and robust as possible. In the case of continentality
computation, possible “input” variables are :

• coast line, which is influenced by sea-level, driven
itself by the modelled continental ice amount.

• modelled wind, connected with arrival of air masses
over the continent. 

Two kinds of “continentality predictors” will be designed
in this study. The first one uses the modelled wind to
gain some information on how air masses come to the
continent, and therefore will be called “advective
continentality”. As mentioned above (section 2.1.2),
CLIMBER does only contain a limited representation of
wind, which relates to monthly means and doesn’t
explicitly include cyclonic and lower scale circulations.
In the model, this is supplemented by a representation
of mean energy and moisture transport by the non-
represented motions. A comparison of these outputs
with climatological values suggested that the mean
wind is quite correct. As our aim is to gain some
information about how and from where air masses are
coming to the continent, the “transport” model output
seems less interesting, and was not used : it does not
tell us much about incoming air masses (e.g. cold air
coming from the North as the same effect as warm
air coming from the south). 

2.3.1. - Continentality

Figure 4 : Principles of continentality computation. Schematic changes in continentality for air masses travelling over sea
and land areas (up); Several incoming directions are accounted for, optionally weighting their relative importance in the
continentality for a given land point P according to climate model mean wind. 
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Consider air masses coming from several direction to
the land point for which continentality is to be computed
(P). Each incoming direction thus have a contribution
to overall continentality at P, as sketched on figure .
This contribution is calculated using the following
assumption : an air mass becomes progressively
continental (maritime) as it travels over land (ocean).
The rate of this changes towards continental / maritime
conditions is assumed to be a constant fraction (τ) per
unit time, i.e. the change in continentality during dt time is :

where 
is the continentality (between 0 = sea limit, 1 = land

limit), 
ico = 0 over sea, 1 over land

,in which dx is
the element of

the distance travelled by the air mass during dt, U is the
mean wind norm (from CLIMBER), lo/Uo is the distance
/ wind ratio corresponding to fractional change of 2 of
the continentality predictor, currently set to  

Therefore, the wind speed enters the computation in a
first way : due to the fact that the continentality change
fraction is constant in time, over a given distance the
continentality will change following the inverse of the
wind speed (faster wind means less “residence time”,
thus less “adjustment” to a given surface type). To
complete the computation of continentality at a given
point, we must first integrate the continentality change
over each “incoming air mass path”,

To complete, it is necessary to decide the respective
weight of each path direction. As mentioned, we have
little knowledge of the actual motion of air masses, and
it seems reasonable to rely on simple assumptions,
because we have no physical basis to build a more
complex scheme. Minimal requirements seems to (1)
give more weight to path directions which matches the
direction of the mean wind, and (2) give zero weight to
paths which are in opposition with the mean wind, i.e.

represents an air-mass travelling against the wind (this
would be inconsistent with our above assumptions for
the continentality change over a given path; however,
such behaviour is not impossible in practice and should
be accounted for in the other continentality index). A
simple way to achieve this is to use the scalar product
of the mean wind and the path direction unit
vector     (we have integrated this over each path, but
this is unimportant since the model mean wind doesn’t
change much because the scale is coarse):

The weighted average of the contributions from all
paths gives the continentality at the desired point :

Examples of continentality predictor maps computed
with this method are given on figure.

Coming back on the results of the simple statistical
model used as a starting point (figure), it can be seen
that the above described “advective continentality” has
some potential to explain the observed variability which
was lacking in the simple regression. However, the
model wind comes essentially from the West, while
continentality-like effects are seen on coast which are
only exposed to maritime air coming from other
directions, including the East. It is also interesting to
remember that the mean wind used to define the first
type of continentality does only represent large-scale
motions. This suggests that it is interesting to
supplement the above approach by defining a second
type of continentality, aimed at representing “random”
atmospheric fluxes unresolved by CLIMBER. This will be
called “diffusive continentality” and can be obtained by
computing continentality changes along specific paths
as in equation (4) again, but now without including the
model wind at all. Therefore, all directions have the
same weight in the final result, and the progressive gain
in continentality over land will be proportional to
distance, not to time. Empirical testing with various
rates of continentality change with distance showed
that it is interesting to use rather short scales,

(4)

(5)

(6)

(7)
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suggesting that most larger scale effects are
represented in the “advective” continentality. This
is consistent with (although not a necessary
consequence of) the idea of including scales
unresolved by the climate model. In this study, the
distance corresponding to 50% change towards
continent or sea conditions is 150 km. 

The “diffusive continentality” map for present day
conditions (i.e. coastline) is shown on figure. Note
that only island and headlands have a very low

continentality, due to the fact that other coastal regions
receive maritime air from about half of the directions
only. A map of the minimum distance-to-sea is also
presented on figure, for comparison with the
proposed “diffusive continentality”. Distance-to-sea
was investigated because it might have seemed
simpler, involving no empirical assumptions. However,
diffusive continentality seems clearly more “natural” on
such a visual basis. Regression attempts using the
distance to sea (not shown) also confirm that it does
not represent more of the observed variance.

Figure 5 : Advective continentality”, for present-day and Last Glacial Maximum conditions (see text).

Present-day LGM

Figure 6 : “Diffusive continentality”, left panel; distance to sea, right panel (present-day conditions).

Present-day LGM
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Agood deal of the European climate is connected
with surface elevation. Several topography-
based predictors are thus designed here. These

are constructed from the ETOPO5 surface elevation
map [Ref.9]. 

Temperature is almost directly linked to elevation itself.
The quantitative link is not easy to obtain, though,
specifically when it comes to finding climate change
information based on CLIMBER outputs. A possibility is
to re-compute near-surface temperature for several
height in each (coarse) model grid box, as proposed for
the coupling of CLIMBER and its ice-sheet model (see
Ref.2, section 2.3.2). Another approach is the vertical
temperature gradient from the free atmosphere (lapse-
rate) provided by CLIMBER. The rationale behind this
choice is that mountains are rather small within the grid
box, and that from an empirical point of view, the impact
of altitude on temperature is indeed about the same as
in the free atmosphere. This second approach is used
in the present work because initial tests suggested that
it was more appropriate for our domain, but the first
approach should remain open to investigation in any
further study. In practice, the predictor is the product of
the lapse-rate obtained from CLIMBER by the high
resolution surface elevation, as shown for an example
case on figurea.

As we are working on a grid, with a certain resolution
(10 minutes, coming from the climatology), we may
expect that the climate variables, specifically
precipitation, are impacted by higher resolution
topographical features. A potential predictor is thus the
standard deviation of surface height, shown on figureb.
While such variable is constant at the time scale of our
study, it may explain a part of the geographical variance
in our climate fields, so that its inclusion in the
statistical model might be useful.

The next topography-related predictor shall be referred
to as “mountain masking”. The aim is to account for
the impact of mountains on the regional climate of the
regions which lie downstream from the mountains with
respect to the main incoming air masses. There are two
possible mechanisms for this “masking” :
- part of the incoming air flow may be diverted by the
mountain,

- the characteristics of air masses which went up the
mountain may have changed in the process, in
particular dried up due to Foehn effect.

These effects are at least partly similar to an increase
of the continentality in the “masked” area (figure , top
panel). In this study, the corresponding predictor is
computed separately of the continentality, but in a
similar way. As for continentality, several incoming air
masses directions are considered, with the same
weighting as before. The main change here is that the
“masking index” increase only when the “hypothetical
air mass” is going up. In practice, the computation is
based on the difference between the height of the
surface at each point along the “hypothetical air mass”
track and the height of the target location. An example
of the resulting maps is given on figurec.

The last predictor is connected with the lifting of air
masses over topography, with a potential link to
increased precipitation (figure , bottom panel). In this
study, only the mean zonal wind is accounted for,
and multiplied by the mean east-west slope over
approximately 100 km. Only upward trends are
retained, while the effect of downward mean motion is
assumed to be represented by the “masking” predictor
presented above. An example of the resulting maps is
given on figured.

2.3.2. - Mountains
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Figure 7 : Mountain-related predictors, present-day conditions (January). 

a. topography / lapse-rate effect (C)

Figure 8 : Principles of the computation of predictors related to secondary mountain effects.

b. subgrid elevation deviation (m)

c. “mountain masking” d. “upslope” effect
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B eing based on a regression, the method works
in two steps : first the regression function is
defined as a best fit to available (present-day)

data, secondly it is applied to predict high-resolution
climate based on the corresponding changes in the
coarse climate model. As the first step, or calibration,
is based on minimizing the difference between the
regression values and the present-day climatology,
using corresponding input values, it needs present-day
values for the predictors. These predictors being based
on CLIMBER model values, a specific simulation

starting from the pre-industrial conditions was run until
conditions approximately matching those of the late
20th century. The end of this simulation provides the
“present-day” model outputs, which are consistent with
the climatology.

The statistical models used for the downscaling of
temperature and precipitations will now be presented.
Results for the Last Glacial Maximum (LGM, 21 kyr BP)
will serve as an application example and an
independent validation opportunity.

A few different sets of predictors, as well as
various changes in the design of these
predictors (e.g. length scales involved in the

computation of continentality), where tested during this
project. The following statistical model represents our
best selection of predictors for the temperature field:

in which the various terms are based on the above
described predictors :
Ca advective continentality
Cd diffusive continentality
µ mountain masking effect (not included for summer 

months because it did not explain a significant part 
of the variance in that case)

Υ lapse-rate effect
ƒca , ƒcd , ƒµ , ƒΥ   are spline functions with only 3 knots,
which results into high smoothness, i.e. the functions
can not be very complex. The objective is to allow the
contribution of each term to be somewhat non-linear,
because it’s difficult to build physical predictors which
would provide a simple linear contribution to
temperature or precipitation maps. However, the
contributions can not be too complex, because this
would introduce a kind of “overfitting” : the statistical
model would not represent a link between our
predictors and observations, it would just produce an
arbitrary and meaningless fit to the data.

The most simple way to use the presented downscaling
approach is to calibrate the statistical model using data
for a single month in the year, then apply it to the same

month of a climate change scenario. The regression
itself relates to the geographical variability, and is thus
stationary in time. In turn, the computation of the
predictors is assumed to have a physical basis, and
thus some robustness regarding the long-term time-
variability. For example, if the coastline moves, the
continentality predictor will change, and its contribution
to local temperature will change accordingly (this
aspect being assumed stationary). However, our
current design of the predictors does not include any
input related with the seasonal cycle: e.g. continentality
is computed, but the impact of continentality on
temperature is highly season-dependent : it might be
desired to predict this link on the basis of climate
model data. But using such seasonal-cycle related
information from the climate model would introduce
more complexity in the method, possibly bringing
uncertainty. This did not appear to be desirable in the
context of a first downscaling method for the CLIMBER
model. 

Nevertheless, some partial accounting for month-to-
month changes is possible : rather than calibrating the
model for 1 month, it can be calibrated using the
months preceding and following the month of interest.
This has two kinds of advantages:
• it provides a validation opportunity for the method. If

the month of interest is not used for the calibration,
it is interesting to compare the prediction of the
method for this month to the actual climatology,
because these data are partly independent. A good
matching between these maps suggests that the

2.4.1. - Temperature

(8)
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method is at least making an acceptable use of the
model data to make a prediction in different conditions.
It doesn’t suffice to validate the method in the climate
change context, but it is a satisfying first test.

• some gain, possibly minor, might be expected in
robustness. For climate change prediction, three
months can be used at the calibration stage : the
target month and its two neighbours. This may
include more “diversity” in the calibration data than
just one month would do. Although the regression will
match the climatology of the target month less
closely, it is not evidently worse: in fact more data are
used, both from the model and the climatology, so
that this may help cancelling random errors. 

The practical implementation of this 2 or 3-months
calibration is simple but not immediate: the large-scale
model temperature gradient (∆ΤΜ) needs to be
computed on the basis of the mean temperature of
each month. To put it shortly, the monthly mean
average temperatures do not enter the statistical

model, and the final output temperature is obtained by
adding the climate model mean for the target month.

Figure  presents results for temperature in January. The
method is calibrated using the climatology and model
outputs for December and February. The temperature
prediction based on equation 8 for January is reported
on panel 9b, and compares favourably with the
corresponding climatology on panel 9a. The explained
variance is 95.2%, confirming that the designed
predictors are appropriate. The difference between
the climatology and regression, or model error, is
presented on panel 9c. This can be compared to the
error obtained with a calibration based on the month
of January itself. 

The corresponding maps for temperature in July are
presented on figure . The explained variance is less than
in January (90.7%), as shown by the comparison between
climatology and model fit output (panels a, b and c).

Figure 9 : Calibration and validation for temperature (°C) in January (see text).

a. Climatology b. Regression

c. Climatology - regression d. Climatology – reg. based on January
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Figure 10 : Calibration for temperature in January: contribution of each term based on spline function to the regression
(additive model). Abscissa : predictor. Ordinate: contribution in Celsius (zero mean is imposed).

a. lapse-rate effect (ƒƒΥΥ ) b. advective continentality (ƒƒca)

c. diffusive continentality (ƒƒcd) d. mountain masking effect (ƒƒµµ )



BIOCLIM, Deliverable D8b

Figure 11 : Calibration and validation for temperature (°C) in July (see text; please note that the colour-temperature
correspondence is not identical in the two bottom plots).

a. Climatology b. Regression

c. Climatology - regression d. Climatology – reg. based on July

As the CLIMBER modelling and the downscaling
method are aimed at providing results for widely
different climates, the Last Glacial Maximum (LGM) is
an interesting test period. Last Glacial Maximum
surface air temperature in January is reported on
figure. The first two panels (a and b) are based on the
3-month calibration explained above, and represent our
best estimate for the LGM temperature and its
difference to present conditions. The corresponding
sea level change, due to the growth of continental ice
sheets, is –128 m. Consequently, the coastline is also
very different in northern Europe. Panel c shows the
LGM temperature anomaly computed with CLIMBER
alone (with linear interpolation). The downscaling
method (panel b) provides significantly different results,
in particular over England and Italy (respectively warmer

and colder than CLIMBER values). The details of the
downscaling method does not seem to have large
impacts on the results. In particular, using a calibration
on January only rather than 3 months (JJA) does almost
not modify the result (panel d). Another test is to
remove the diffusive continentality predictor from the
regression (panel e). The result is modified in a rather
expected way, with the disappearance of low distance
effects of coastline changes around England. This gives
some idea of the uncertainty of the method : while the
results should be better when the diffusive
continentality is included, this predictor clearly fails to
reproduce certain details of the actual temperature
change in the coastal region (see figure). It is thus
interesting to see how this predictor influence the
results.
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Temperature reconstructions for the LGM are available,
mainly on the basis of pollen data. However, the
temperature is available only at certain locations and
the values are still the object of research aimed at
improving their reliability. The reconstruction shown
here (figure 2) was used in the framework of the
Paleoclimate Model Intercomparison Project (PMIP),
and presented in [Ref.10]. Temperatures anomalies

(LGM-present) for January over European sites range
between approximately –10 and –30°C. This is clearly
below all values obtained here. The downscaling does
not significantly improve the comparability of simulated
results to the reconstruction. However, there are only a
few sites for which temperature data is provided which
falls inside the BIOCLIM domain, so that no conclusions
can be drawn at the moment.

p. 20/21

Figure 12 : Last Glacial Maximum, January near-surface temperature (°C). a. LGM, b. predicted difference between LGM
and present, c. CLIMBER interpolated, d. predicted difference when the calibration is based on January only (others use
DJF). e. predicted difference when diffusive continentality is not included in the regression.

b. difference, DJF calibration c. difference, CLIMBER

d. difference, January calibration e. difference, no diffusive continentality

a. LGM
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Figure 13 : LGM-July temperature, as on figure 12

a. LGM

d. difference, July calibration

b. difference, JJA calibration c. difference, CLIMBER
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Figure 14 : Temperature anomalies (°K), LGM-present, as reconstructed by Peyron et al.[Ref.11] (circles) and Tarasov et
al. [Ref.12] (squares). Reprinted from Kageyama et. al., [Ref.10].

The following statistical model represents our
selection of predictors for the precipitation field:

in which 
, with PM being the precipitation amount

(mm/day) provided by the CLIMBER model and  

,

is the predicted precipitation amount, and the various
terms are based on the previously described predictors :
z surface eight
σ subgrid standard deviation of the surface eight
ca advective continentality
s upslope effect
Psl sea-level pressure

A prominent feature of the regression used here is that
it is based on the logarithm of precipitation amount
rather than precipitation itself. The basis motivation of
this choice is that precipitation spans a relatively large
range of magnitudes. In association with this,
predictors like sea-level pressure influence precipitation
in a way which is closer to exponential than linear. As a
general rule, tests with the logarithmic formulation
provided better regression fits than with direct
introduction of precipitation (in agreement with the idea
that the impact of predictors is roughly exponential). 

The climatology of precipitation is more complex than
that of temperature, it is more difficult to connect
precipitation maps to simple physical mechanisms. We
tested many combinations of our predictors, and when
retaining only the physically plausible regressions, the
explained variance is lower than for temperature (with
the final statistical model choice, the explained
variance is 59% for January and 68% for July, for
calibration on these single months). The retained
statistical models mainly involves linear terms. This is
preferred here because test with spline functions tends
to produce unrealistic results. This poor behaviour of
the spline formulations is connected to the fact that
part of the geographic variability can not be explained
by our predictors : the functions connecting predictors
to predictand becomes more complicated, but this only
improves the regression with present-day values. This
would represent overfitting, not improvement of a
“physically sound” link. Linear terms leads to lower the
explained variance, so that it must be recognised that
we don’t have a complete understanding of
precipitation and its change. However, this prevents the
introduction of unrealistic components in the
regression, which would likely be worse than the
limitations of our physically based predictors. The
prediction of the retained statistical model for present-
day conditions is shown on b and figure 16c.

2.4.2. - Precipitation

(9)
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As an example of method-related uncertainty, one of
the tests with another regression equation is presented
here. This one is connected with the representation of
precipitation peaks near the western coasts in January.
The above regression underestimates this maxima
(figure 15d). The alternative consists in replacing the
linear advective continentality term by a more complex
one based on a spline function (figure 15f).. This gives
more freedom to the statistical model, which indeed
better represents the coastal precipitation maximum
(unfortunately, the diffusive continentality proved
unsuitable for this purpose). As mentioned above, is
probable that relying on complex fitted functions like
this involves some “overfitting”, so that the statistical
model does not entirely represent real physical links
between predictors and precipitation. The practical
consequence is that we regard the climate change
results obtained with the “alternative” regression
(figure 15g) as less reliable than the standard result
(figure 15d), but more importantly, the difference
between those two represents a typical uncertainty of
the method.

It is interesting to note that there is theoretical risk of
overfitting related to the combination of coarse model
data. When two very coarse fields are used, in
particular precipitation and sea-level-pressure from
CLIMBER as here, the linear combination of these fields

can indeed provide any requested large scale gradient
(each coarse input field approximately represent a large
scale gradient, and if these are not collinear, their
combination gives any other gradient). In other words,
any set of two model variables should explain a
significant part of the domain-wide variability, so that
the fact that such predictors contribute to increase the
explained variance is not a proof that it forms a valuable
statistical model. In the case of model precipitation and
sea-level pressure, there are however good reasons
to use these variable as predictors. Higher mean
pressure is indeed associated with lower precipitation,
connected with the presence of less low pressure
systems in the area and/or air subsidence.

Last, a fraction of the unexplained variance may
possibly be due to inaccuracies in the climatological
data. Details of the climatology may indeed still be
questioned, specifically for precipitation over mountain
regions. This is shown by the difference between the
1/2 deg climatology and the new 1/6 deg CRU
climatologies on figure 16 a and b: there are significant
differences near the alps, at scales much larger than
the grids (more detailed information over the Alps is
available form the MAP project, but accessing these
data was not planed in the framework of this project
and is not clearly needed because no BIOCLIM sites are
located in that region).

BIOCLIM, Deliverable D8b
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Figure 15 : Calibration and LGM results for
precipitation in January (calibration based on
December-January-February)

a. CRU climatology (mm/day)

b. Regression, present (mm/day) c. LGM (mm/day)

d. LGM/present (%), downscaling e. LGM/present (%), CLIMBER

f. Alternative regression, present g. LGM/present (%), alternative
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Figure 16 : Calibration and LGM results for July (calibration based on June-July-August)

a. CRU climatology – 1/2 deg (mm/day) b. CRU climatology – 1/6 deg (mm/day)

c. Regression, present (mm/day) d. LGM (mm/day)

e. LGM/present (%), downscaling f. LGM/present (%), CLIMBER
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Figure 17 : Sea-level pressure (hPa) in CLIMBER, January. Left: present-day conditions; right: LGM.

Climate reconstructions for the LGM indicate large
reductions of the annual mean precipitation over
Europe, at least where data is available such as in
the north of the Iberian peninsula and near the
Mediterranean [Ref.10]. By contrast, the downscaling
results represent moderately increased, constant, or
slightly decreased precipitation in January (figure 15).
Although annual precipitation was not computed here,
the obtained precipitation increase is not compatible
with the reconstruction data. The interpolated CLIMBER
precipitation field shows even higher increases of the
precipitation, and this is the main origin of the
disappointing downscaling result. 

At the global scale, precipitation decrease is expected
at the LGM as a consequence of lower temperature and
thus lower atmospheric moisture content. Over mid-
latitudes, storm-track changes complicate the picture.
The Atlantic storm track is believed to be shifted in the
northeastward direction at the LGM [Ref.13]. This may

provide more precipitation, but in the north of the
continent, not in southern Europe as found here. This
suggests that the present CLIMBER run does not
adequately represent large-scale precipitation changes
around Europe. As already mentioned, this model does
not explicitly represent low pressure systems, but
parametrize their effect. In the present case, this
possibly fails to represent the appropriate moisture
transport change. The change in the sea-level
pressure field (figure 17) also seems inconsistent
with the suggested storm-track shift. Over the Iberian
peninsula, the decreased surface pressure contributes
to increase the precipitation obtained with the
downscaling method. However, precipitation over
Europe is only one aspect of CLIMBER results among
many others. It would be dangerous to draw
conclusions about the ability of the model to represent
precipitation in this area before making new
experiments and specific investigations.



3. Downscaling for
the BIOCLIM future scenarios
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Several simulations covering the next 200 kyr
were performed by two climate models, as
reported in deliverable D7. In this report, we

apply the presented downscaling method to the results
of CLIMBER-GREMLINS. In summary, the simulations

correspond to a scenario of the natural CO2 variations
(A4a), a scenario including a moderate fossil fuel
contribution (B3) and a scenario including a high fossil
fuel contribution (B4). The corresponding CO2 time-
series are remembered on figure 18. 

Figure 18 : CO2 concentration (ppmv) as
a function of time (decades). Natural
scenario (A4a, black), Fossil fuel (B3,
blue) and high fossil fuel (B4, purple).

Figure 19 : Sea-level (m) computed for the natural (A4a) and moderate fossil fuel contribution (B3) scenarios (reference
level : present-day conditions).
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p.28/29The sea-level is estimated from the ice northern-
hemisphere ice volume computed by CLIMBER. The
changes in Antarctic ice volume are not included here
because these are not modelled. However, the
Antarctic component is much smaller than that of the
northern hemisphere, so that the approximation is
acceptable for computing the sea-level in the present

context. The sea level is estimated as 
(N.H. ice volume at a given time – present-day ice
volume) x (2.2 m / 106 km3)

This estimate gives a satisfactory value for the last
glacial maximum (-129 m). The resulting sea-level
height is shown on figure 19.

We first present detailed results for the natural
scenario, explaining how these were obtained. In a next

step, summarized results are presented for the fossil-
fuel scenarios.

3.1. - Time series for the sites

T he downscaling methodology was applied on the
model outputs for the three 200 kyr scenarios,
providing output on the 1/6 degree grid used for

the downscaling (as above). This output was computed
only for the points which belongs to a BIOCLIM site. The

definition of the BIOCLIM sites used here is given in
table 1. In this section, the results are presented as
simple statistics based on the outputs on each site
(site minimum, maximum, and mean).

Table 1: Definition of the BIOCLIM sites within this report. The temperature and precipitation columns provides climatological
mean values (“present-day” CRU climatology used as a reference for downscaling)

Site Site name Latitude Longitude Temperature Precipitation
No (from – to) (from – to) Jan July Jan July

1 Czech Republic 48.9 – 49.5 15.0E – 15.6E -3.3 16.5 1.35 2.58
2 Germany 52.0 – 52.6 10.0E – 11.0E 0.3 17.3 1.60 2.22
3 France (Bure) 48.3 – 48.9 5.3E – 6.0E 0.9 17.7 2.73 2.18
4 Spain - Toledo 38.0 – 41.8 6.5W – 1.5W 5.1 23.0 1.64 0.47
5 Spain - Padul 36.7 – 37.3 4.0W – 3.4W 5.5 23.5 2.03 0.39
6 Spain - Cullar 37.3 – 37.9 2.9W – 2.3W 5.8 23.3 1.68 0.43
7 Central England 51.6 – 54.8 2.8W – 0.0 3.1 15.4 2.45 1.91

While the initial downscaling output is available
over each gridpoint (1/6 degree), we have
only present mean, minimum and maximum

values over the sites (however all results are available
for all scenarios and site grid-points, see appendix 1). 

The available results are :

• downscaling output (“uncorrected”) 

• corrected downscaling output, obtained as follows :
For temperature, the difference between climatology
and present-day downscaling output is added to the
output from the downscaling for the scenario (i.e. the
present-day downscaling error is removed, giving the
correct value for the present climate, but this
correction is maintained constant under climate
change conditions while the actual model error is
unknown for all future times). 

3.1.1. - Natural scenario – model / downscaling comparison
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For precipitation, the ratio of climatological and 
predicted values is used to correct the downscaling 
scenario, by multiplying the downscaled precipitation 
by the correction ratio (rather than adding a constant
like for temperature). Thus if the model downscaling
method predicts a 50% increase in precipitation, we
just compute future precip as being 50% more than
present-day climatology (not 50% more than present-
day downscaling output, nor adding the precipitation
increment from the downscaling to climatology)

• model: linearly interpolated CLIMBER output,
provided for comparison.

• corrected model output. The corrected model value
is the interpolated CLIMBER result with a correction
done as for downscaling above:  the time-mean value
is corrected so that model-mean matches the
climatological mean for present climate (additive
correction for temp, multiplication for precipitation).
This provides a fair comparison of model values to
downscaling:  while absolute model results do rarely
reproduce the climatological mean with a high
accuracy, the model is expected to provide an
acceptable (large-scale) climate-change signal. 

A selection of the results for the natural scenario (A4a)
is presented in figures 20 (temperature) and 21
(precipitation). The meaning of each curve is
summarised on figure 22. Site-mean values are
provided for model, downscaling and corrected
downscaling, as defined above. Site minimum and
maximum are provided only for corrected downscaling,
as this is the most important output for practical
applications. The four last sites (in Spain and England)
show larger differences between minimum and
maximum values because the site area is larger, and
sometimes because topography is more complex.
While looking at the results, it is important to note that
the present-day values are never plotted on the

graphics : these begin with the first climate model
output, that is after 1000 years from CLIMBER run start
(pre-industrial). To compare future values with present
day ones, the climatological values are provided in table
1 (those values are used to calibrate both the
downscaling method and the “corrected values”
introduced above).

For temperature, the difference between corrected
downscaling mean and model mean values are quite
small, not exceeding 1-2°K in both January and July.

The results for precipitation are more surprising. The
results of the downscaling outputs are largely different
from the model results, and the downscaling also
provides a larger time variability. For present day, both
the corrected model and corrected downscaling values
are equal and matches the climatology. Therefore, the
differences between these two time-series is only a
consequence of the long-term time variability. The
“correction” methodology, based on a multiplication by
a constant factor as explained above, may explain
some aspects of the results, but not many (uncorrected
values are also shown). As a general rule, time-
variability seems quite low in the model. By contrast,
the variability found in the downscaling output is highly
unexpected. Downscaling outputs goes up to more than
200% of the model output. In addition, there are
circumstances for which the time variability shows
phase oppositions between model and downscaling
values. While it is unclear that the model itself is better
at this scale, downscaling values should be considered
very prudently. A possible origin for the large increases
in the mean and variability of precipitation is the sea-
level pressure term used in the downscaling. While the
downscaling methodology has been developed
carefully, it is only a first version of a rather new
method; it still needs more validation, and this would
likely suggest improvements.
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Figure 20 : Natural scenario for the next 200 kyr – temperatures (°K). Legend is given by figure 22.

Site

1 Czech Republic

2 Germany

3 France

4 Spain - Toledo

5 Spain  - Padul

6 Spain - Cullar

7 Central England

January July
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Figure 21 : Natural scenario for the next 200 kyr : precipitation (mm/day). Legend is given by figure 22

Site

1 Czech Republic

2 Germany

3 France

4 Spain - Toledo

5 Spain  - Padul

6 Spain - Cullar

7 Central England

January July
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Figure 22 : Legend for the natural scenario time series (figures 20 and 21).
The data types are defined in text. Minimum/maximum/mean values refer to
statistics over the site areas.

F igures 23 and 24 show site-mean downscaled
temperature and precipitation for the three
studied scenarios. As in the previous section, all

graphics start after 1000 years of CLIMBER run, and
the corresponding present-day value is the climatology
given in table 1 (i.e. these are “corrected” downscaling
outputs, as defined in the previous section).

For temperature, specifically in January, the main
difference between the natural and anthropogenic (B3
and B4) scenarios is connected with an abrupt
temperature increase in  CLIMBER. This abrupt event
does not happens at the same time in the
anthropogenic and fossil fuel scenarios. The event is
probably connected with changes in the thermohaline
circulation (see Ref.2). There are only rather minor
differences between scenarios B3 and B4 (less than
1°K, decreasing with time).

For precipitation, the reliability of the downscaling
method is unclear, due to the unexpected results
obtained for the natural scenario in the previous
section. In January, the long-term decreasing trend
found in the natural scenario (e.g. for the German site)
appears as much weaker, almost suppressed, in the
fossil-fuel scenarios. Thus, precipitation is much
heavier for the fossil fuel cases in January. By contrast,
precipitation is generally lower for the fossil fuel
scenarios in July; in itself, this is not surprising for
future climate experiments. However, a curious feature
of these plots is that the difference between the natural
and anthropogenic runs is increasing with time for
several cases, e.g. German site in January or England
site in July. Since the downscaling method itself is time-
independent, this effect should be attributed to
CLIMBER – possibly with an exaggerated  amplification
due to the downscaling methodology.

3.1.2. - Fossil fuel scenarios
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Figure 23 : Comparison of scenarios for the next 200 kyr : temperature (°K). Natural scenario (A4a, red line); fossil fuel
scenario (B3, black line); high fossil fuel scenario (B4, green line)

Site

1 Czech Republic

2 Germany

3 France

4 Spain - Toledo

5 Spain  - Padul

6 Spain - Cullar

7 Central England

January July
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Figure 24 : Comparison of scenarios for the next 200 kyr : precipitation (mm/day). Natural scenario (A4a, red line); fossil
fuel scenario (B3, black line); high fossil fuel scenario (B4, green line).

Site

1 Czech Republic

2 Germany

3 France

4 Spain - Toledo

5 Spain  - Padul

6 Spain - Cullar

7 Central England

January July
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3.2. - Snapshots

T he downscaling method was applied on all land
points of the domain for two specific years
selected and used in other BIOCLIM work-

packages : + 67 kyr (case E) and +178 kyr (case F) from

run B3. The temperature and precipitation change,
found with the GCM are remembered in table 2 (values
averaged over Europe, taken from [Ref.14].

Table 2: Summary of results from deliverable D4 – GCM simulations (IPSL_CM4_D model) which corresponds to the snapshots
presented here, averaged over Europe. The values are mean temperature (K) and precipitation (%) changes  for winter and
summer.

Snapshot DJF JJA

∆TDJF ∆TJJA

∆PDJF ∆PJJA

“E” -0.024 +2.4
+1.6 -6.8

“F” -0.87 -0.33
+5.3 +1.3

The downscaling results are presented in figures 25
(+67 kyr) and 26 (+178 kyr). There are no significant
regional features in these temperature and
precipitation change fields. This does not means that
the downscaling method is wrong : it is accounting for
the regional variations in the fields for a given time, it
just did not find local effects of the climate change.  The
downscaling outputs are nevertheless not identical to
the simple linear interpolation of CLIMBER results (not
shown here), and may be more realistic. However, the
near absence of regional or local details is rather
disappointing. Sea level did not change much in
scenario B3 (a few meters, see figure 19), so it could
not have a large effect (it is probably responsible for a
few “odd” points in the temperature plots, near the
coasts). Mountains might have provided more

interesting effects, connected with mechanisms such
has “masking” or lapse rate changes (section 2.3), but
such effects where at most very weak. 

For precipitation, the large increase found in the time
series over the sites shows again here. As explained in
section 3.1.1, this increase is rather surprising and can
not be given a high confidence without more research
and general validation of the method. However, it is
important to note that CLIMBER itself shows large
precipitation increases for the present snapshots.
When linear interpolation is used instead of
downscaling, the precipitation change goes up to 200%
but with a partly different geographical repartition and
covering a smaller area (not shown).
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Figure 25 : 67 kyr after present.Temperature change (°K, above)  and precipitation change (%, below).Changes are relative
to present-day (end of the XX century).  Grey areas are under sea-level at that time (and not in present day)

January July
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Figure 26 : 178 kyr after present. Temperature change (°K) and precipitatin change (%), as in figure 25.

January July
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4. Conclusion

This repor t presents a downscaling
methodology designed to provide high
resolution temperature and precipitation data

on the basis of outputs from the intermediate
complexity model CLIMBER-GREMLINS. The method
provides a link between the coarse climate model
outputs and the regional (or local) climate data
needed for performance assessment of radioactive
waste repositories.

To obtain climate-change information at 1/6 degree
resolution on the basis of the climate model
outputs, the downscaling method works in 2-steps.
First, physical considerations are used to define
variables (predictors) which are expected to have
links which climatological values; secondly, a
generalized additive statistical model is used to find
the links between these variables and the high-
resolution climatology of temperature and
precipitation. Thus the method is termed as
“physical/statistical” : it involves physically based
assumptions to compute predictors from model
variables and then relies on statistics to find
empirical links between these predictors and the
climatology. These “physically based assumptions”
are necessary because the climate data are
provided by an intermediate complexity model,
which  gives only limited information about space
and time variability: it provides coarse data which
can not be directly linked to regional climate change
by a statistical model calibrated on present-day
climatology (but other downscaling strategies are
also be applicable, such as in Ref.15. 

The predictors which have been computed
from CLIMBER outputs and physically-based
assumptions are : continentality (with advective and
diffusive variants), vertical temperature gradient,
effects of mountains (masking, Foehn-like upslope
effect).  

The method is new. It has been successfully applied
to CLIMBER, providing outputs for the BIOCLIM
scenarios. The conception of the method was
careful : many tests with different sets of predictors
have been conducted (only the most interesting
ones where repor ted here). However, fur ther
research and improvement will still be possible in
the future. A potential area for improvement is the
treatment of the seasonal cycle: in the current
version, there is no predictor related with the
seasonal cycle, while in practice the impact of
continentality on temperature is highly season-
dependent. In more general sense, the way
continentality affects land temperature in the
method also need further investigations, with a view
to account for temperature contrasts between sea
and land in CLIMBER. While this may seem easy, it
will need a careful look at CLIMBER outputs in
different climate states. Knowing which variables
can be useful and how it might be used is not
immediate, because due to the simplified nature of
the climate model, variables such as SSTs may not
have the degree of realism required for direct use in
the downscaling process. The limited comparison
with reconstructions for the last glacial maximum
did not show advantages of the application of
downscaling. This may have several origins,
including the climate model and the precision of the
past climate reconstructions, so that this also calls
for more research in the future.

Monthly mean temperature and precipitation are
presented for 3 scenarios for the next 200 kyr
(natural and fossil fuel cases). These variables are
mainly shown as time series of site-mean values
plus maps a two specific times, while more data
is available in numeric form (see appendix). For
temperature, the downscaling results are expected
to have some realism, and may be interesting to
use for  performance assessment – at least as an
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p.40/41 alternative to more direct CLIMBER-GREMLINS
outputs. The downscaling results for precipitation
should be considered more prudently. Large
increases are shown in the future both in the model
and downscaling results (up to about 200%),
but the downscaling procedure provides high
precipitation amounts over larger parts of Europe,
as well as other surprising results. While it was
interesting to obtain complete results with this new
method, this clearly opens the way for further
research.
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Appendix 1 : Data product
The temperature and precipitation time series (200 kyr starting from present) have been made available to the
BIOCLIM community on the Buisness Collaborator web site (http://cobweb.businesscollaborator.com/bc/bc.cgi).
The provided values are those presented in the graphics of section 3.1 in this report. Data is thus available for each
BIOCLIM site, for scenario A4a and B3 (at least). A simple ASCII format is used, and can be read with commonly
used software. There are two basic types of files : “raw” results contain values (temperature and precipitation) over
each downscaling-grid points, and the regular output provides simple statistics on these values (e.g. site mean, max
and min for the interpolated CLIMBER output, climatology, downscaling output). There is thus somewhat more data
regarding the time series than shown in the report. The detailed description of the files and their organization is
provided with the files. 
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